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Love [1] considered particular solutions of equations of the three-dimen-
sional theory of elasticity for the basic state of stress. Lur'e, with the
ald of a symbollc method, descrlbed in [2] and [3] two infinlte sequences
of particular solutions of the type of St.Venant edge effects. Nevertheless,
simplifled boundary problems with edge effects are solved for the state of
stress only by application of relaxatlon methods in the three-dimensional
theory of elasticity [2] to [4]. Therefore, work on approximate methods of
solution of problems with St.Venant edge effects deserves attention.

Asymptotic methods were presented in [5] to [7] for the construction of
equations successlvely determining particular solutions for edge effects in
the basic stress state, with asymptotic errors of the order of a, a3 a%....
(a ~ 0 and 1s relative plate thickness). Friedrichs and Dressler [6] showed
the edge effects with these equations 1in the case of a free edge, Gol'den-
velzer [7] considered still other boundary problems. In [8] another variant
of the asymptotic method (as ¢ ~ O) was applied; 1t was based on the appli-
cation of particular solutions known from [2). In particular, the asympto-
tic error in Kirchhoff theory was studled in [ 8] for certaln boundary prob-
lems. In spite of this, the question of approximate numerical solutilon of
boundary value problems remains insufficlently lnvestigated.

An approximate method of solution for boundary value problems is presen-
ted below based on the expanded state of stress and on edge effects expanded
in a series of Legendre polynomials along the coordinate normal to thc mld-
dle surface. As a concrete example, a strip 1s consldered, clamped at ‘the
edges and bent under a uniformly distributed load P on both faces. Numerl-~
cal results are obtained, retalning from one to four Legendre polynomials
in the seried for the displacement and taking account of from zero to threce
pailrs of St.Venant edge effects. The solutlion appears in the form of an
expansion in numerlcal powers of @, having essentlally dlfferent (morc than
100) coefficients of which the grater number vary little with dncreacc in
the number of terms used in the Legendre polynomials. Three signiflicant
conclusions can be drawn from the numerical results.

a) It 1s necessary to proceed with care in the application of asymptotic
formulas (@ - O) for the calculation of real plates wlth finite thickness
In the case consldered, the errors in the bending moment of the Kirchhoff

theory have values in the asymptotic sense of the order ofua, e®,... Never-
thelecs, for @ = const >1-15 the numerical values of the "second correc-
tions" are pgreater than the rirst! In a part of the bend (outslide cdpe of-

fect zones) the "second corrections” up to a = const > '/ dominate.
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b} Numerical values of the corrections to the Kirchhoff theory are com-
paratively small even for fairly thick plates. For example, the correction
to the bending moment in the middle of the span for @ = !/, 1is about 12%,
and for ¢ = */,,, about 1.4% .

¢} The conclusion in [8] relating to the accuracy of the Reissner theory
must be commented upon. Although the Relssner theory does not determine
corrections of the order of @ to the Kirchhoff theory in the gilven case, it
may (for appreciable values of g} define more accurately the basic state of
stress in a plate.

We note that in [9] and [10] the stresses were expanded in a serles of
Legendre polynomials originating directly from the three-dimensional theory
of elasticlity. Below, the displacements are expanded in Legendre polynomials
for known particular solutions [2} and [8) of the basic state of stress with
with edge effects.

1. Basic notations, Let F be the modulus of elasticity, u Polsson's
ratio, 2h the plate thickness, 7 a characteristic dimension-of the middle
surface, a = 2h/] the relative plate thickness, £,n and { dimensionless Car~-
tesian coordinates (devided by hz of which £ and n are chosen on the middle
surface of the plate ({ = 0), u,{t = 1,2,3) dimensionless displacements
(devided by k) in the £,n and { directions respectively, o,,{t,/ =1,2,3
dimensionless stresses (multiplied by (1 + u)z '), #,. and @ Er,s = 1,2
dimensionless moments and transverse forces,,&_(cj and P&ﬂ(g)zn= 0,1,2,...)
Legendre polynomials. We have

+1 +1
My=§ ok, Q={oqst =12 .9
-1 -1
Pyfy=1, PO =L P)=20E0—1),.. (1.2)
We denote by g,,g; the conjugate roots [2] and (8] of Equation
sin 2¢ = 2¢4 {1.3)

which have the property Re ¢, < 0. Furthern let
fgcos gl  costgsingl | ) q }

&’5*[(— 2—3p T 3—2n singd sin ¢ lo=q;
{gsin gf  sin® g cos ¢f ) q ]

["_[(2—2Po —Tz— T%5ny g=q;

Conjugate values g,,f, are obtained from {1.4) by supstitution of g, for

gy
In order to describe edge effects near a surface § = const we use a co-

ordinate &y directed from the edge in the interior of the plate.

(1.4)

2. OCaloulation of & strip. Passage to this case consists 1n the expan-
sion {at the edge surfaces) of those guantities whilch specify the edge con-
ditions in a series of p-functions, and in thelr approximate satisfactlon
with a finite number of terms of the series. We consider the strip to be
infinite along m, and to have a span 1. We place the origin of the g co-
ordinate in the middle of the span so that on the edges

E=dfn =0,  Ey= gy =a 2.9

Let the strip be loaded by a normal force so that on the surfaces {==zx1

o33 €, 1) =055, £1)=0, oy5E, +1)=+p, p=const (2.2)

Here the state of stress depends on the coordinates § %gp [4 %nd may be
represented [8] as & sum of the basic state of stress (u s ugt gand the
edge effects(ufih uélb,connected with the roots of Equation {1.3). Thus
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uy = @ W, uy = 0, uy = uy® 4y {0 2.3)

We assume Identical edge conditions on the edges € = €, and £ = —£,, By
making use of the condition of symmetry, from [8] we obtain Formulas for the

displacements
a} for the basic state of stress

u, O = (— 284, + U) P, + UP, (2.4)
40 = [A, - (aﬂ — g—}gﬁ-) Ay + Uo]P, +- [—%—Tﬁ_—?A, + U,]P, + UL,
U.___P(i—su i 52+3~52p)’ Ul:pi(_i—z-p. g2+3—59;;)
n=p(be+iSE),  r=pte  p--—piEE @9
Mu® = p(— & + ) —g:%;A,, Q% = — 2pt (2.6)

Here 4, and 4, are consonants of integration.

b} for the state of stress assoclated with edge effects, assuming
that 7 1is sufficiently large for these effects to be considered separately,

i.e.
max (exp ¢;8¢) ~ exp (— 3.7495) < 1 2.7
we have Formulas [ 8]
2.8)
b - qj Ee le e
uW = 3 @Y+ M), wP =g, u® = fCpe r=1,3

i=1
Here W9 3 u tV C. C.;.

2] s the conjugate of ri and jr Ui are mutually conjugate
integration constants. The representation of i, y,( at g, = 0 (on the
edge surfaces) leads to an expansion of the function {1.4) in a series of
P-functions

o o0
8= 2 (Gj gmiat iG;, ymir) Pomirs fi= 2} Figm -+ iFipp) Poy (2.9
m=0 m=0

Ll L]
where Gj, am+1’ Gj, 2m+1? Fj2m1 szm are real numerical coeffliclents. Thelr
values were found for y = 0.3, J = 1,2,3 and m = 0,1,2,3.

It would not be too difficult to write formulas for the stresses in the
form of (2.4) and (2.8) as well. It is interesting to note that the expan-
sion of the edge effect stresses in a series of p-functions glves zero as
the generalized Fourler coefficlents for P, and P, . Thils means that

MW =W =0 (2.10)
Example . We set the boundary conditions as
uy=u3=0 mpu§ = +§ (2.11)

and take p = 0.3. By equating to zero the generalized Fourler coefficients
in the expansion of the displacement in P-functions, we obtain from (2.11)
an infinite system of algebraic equations in respect of 4, 43, X, I, (/=
=1,2,3,....). Here

Cf = Ingj + lilgiyj, C’- = 1}’3‘15 - lfgiY:: (2'12)

Let these equations be numbered according to the p-functions index. Then
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Equation zero has zero coefficlents for ¥, Equations 1 -and 2 have zero co-

efficients for 4,, and all succeeding equations for A, and 4;.

The free

terms Uk(go) differ from zero only for the five first equations (k = 0,1,2,
3,%) and are determined from (2.5) by setting £ = &, .

TABLE 1.
Coefficlients for
ﬂﬂﬁ?ﬁﬁ' Qantity
PEo* pE? PES Dt P
A 0.0875 — 0.7700 — —0.4143
1 As — — +0.1750 — 0.0300
Ay 0.0875 0.0056 0.7752 0.0629 —0.3506
As — — —0.1750 | —0.0056 0.0395
2 X, — — —0.0447 | —0.0607 | —0.0395
Y, — — 0.0109 | —0.0083 0.0293
Ay 0.0875 0.0058 0.7778 0.0749 | —0.3365
As e — —0.1750 | —0.0058 0.0423
. X, — — —0.0169 | —0.0840 | —0.0431
3 Y, — — 0.0070 | —O0.0134 0.0228
X, — — —0.0032 | —0.0076 | —0.0040
Yq — — 0.0046 0.0013 0.0094
Ay 0.0875 0.0067 0.7719 0.0745 | —0.3450
As - — —0.4750 | —0.0067 0.0426
X, — - —0.0127 | —0.0631 | —0.0367
4 Y, — — 0.0085 | —0.0137 0.0254
Xy — — —0.0005 | —0.0070 | —0.0001
Yq — — 0.0012 0.0012 0.0039
X3 — — —0.0012 | —0.0016 | —0.0011
Ys — — 0.0027 | —0.0002 .

We call the first approximation (n = 1) the solution obtained from the
first two equatlons retaining only the unknowns 4, and 4,; then the second

TABLE 2.
Corrections to the bending moment in theA.
middle of the strip span of Kirchhoff
theory (in %
a n
somlere | LRI | e
1 11.4 — 11.4
1 2 12.2 1.0 10.8
3 |3 12.1 1.1 10.6
4 12.3 1.3 10.6
1 1.03 — 1.03
112 1.30 0.32 0.97
10 3 1.30 0.33 0.96
4 1.35 0.38 0.96

approximation (n = 2) is the
solution obtained from the Pirst
four equations retalning the
unknowns 4, ,4,,X,,7Y,, etc.
Table 1 gives the solution to
the first, second, third and
forth approximation (n=1,2,3,%).
The remaining terms of the form

E“l-’li—d (e<C 0.05, d < 0.02)
¢ (2.13)

are omitted.

If in the expressions for
the first approximation for 4,
and Az, only the principal terms
are retained (the largest powers
of g,), then the Kirchhoff solu-
tion 1s obtained. Table 2 shows,
in percent, the corrections to
the bending moment in the middle
of the strip span according to
the Kirchhoff theory. The "first"
and "second" corrections are
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those corresponding to whether the quantity is of the order of g or @® as

a - 0. The conclusions frcm Tables 1 and 2 concerning the basic state of
stress were glven in the introduction. In the edge effect zones the lower
approximations @15;4 considered, do not guarantee great accuracy, but for
all that it 1s Seen fhat the stress corrections found by Kirchhoff theory
are not large numerically, although in the asymptotic cencze they are of the
order of gl0) {1 (for g, = 871> =),

Note . For application of the method described to problems where the
state of stress varles also wilth n, the three edge conditions must be fcrmu-
ljated and the displacements determined in the form of sum

u; = w4 w4y 2 (i=1,2,3)

where “émy UJD denote displacements of the basic state of stress and of the
edge effects connected with the roots of Equation (1.3), and the g,(2) are
the edge effect displacements connected with the roots of Equation®cos A =0
{8] and having real coefflcients Z,. The displacements ufm may likewlse be
expanded in a series of F~functions, then the approximate solution for the
edge effect may be obtained analogously to the above with the Z, as addition-
al unknowns.
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