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Love [l] considered particular solutions of equations of the three-dimen- 
sional theory of elasticity for the basic state of stress. Lur'e, with the 
aid of a symbolic method, described in [2] and [ 31 two infinite sequences 
Of particular solutions of the type of St.Venant edge effects. Nevertheless, 
simplified boundary problems with edge effects are solved for the state of 
stress only by application of relaxation methods in the three-dimensional 
theory of elasticity [2] to [4]. Therefore, work on approximate methods of 
SolUtion of problems with St.Venant edge effects deserves attentlon. 

Asymptotic methods were presented In [53 to [73 for the construction of 
equations successively determining particular solutions for edge effects in 
the basic stress state, with asymptotic errors of the order of a, a", a?.... 
(a - 0 and Is relative plate thickness). Friedrichs and Drescler Lb]showed 
the edge effects with these equations In the case of a free edge, Gol'den- 
velzer [7] considered still other boundary problems. In [8] another variant 
of the asymptotic method (as a + 0) was applied; It was based on the appll- 
cation of particular solutions known from [2]. In particular, the asympto- 
tic error In Kirchhoff theory was studied In [8] for certain boundary prob- 
lems. In spite of this, the question of approximate numerical solution of 
boundary value problems remains Insufficiently lnvestlgated. 

An approximate method of solution for boundary value problems is precen- 
ted below based on the expanded state of stress and on edge effects expanded 
In a series of Legendre polynomials along the coordinate normal to the mid- 
dle surface. As a concrete example, a strip Is considered, clamped at 'the 
edges and bent under a uniformly distributed load P on both faces. Numcri- 
cal results are obtained, retaining from one to four Legendre polynomials 
In the seried for the displacement and taking account of from zero to three 
pairs of St.Venant edge effects. The solution appears in the form of an 
expansion In numerlcal powers of a, having essentially different (more than 
100) coefficients of which the grater number vary little with lncreacc in 
the number of terms used in the Legendre polynomials. Three sienlflcant 
conclusions can be drawn from the numerical results. 

a) It is necessary to proceed with care in the appllcatiOn of asymptotic 
formulas (a - 0) for the calculation of real plates with finite thickness a. 
In the case considered, the errors in the bending moment of the Kirchhoff 
theory have values In the asymptotic sense of the order of,?c, a",... Ncver- 
thelezs, for a = const > 'f 

Am 
the numerical values of the second corrcc- 

tlons" are greater than t e first! In a part of the bend (outzido <,dcc cf- 
feet zones) the ' second corrections" up to a = const > I/,, dominate. 
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b) Numerical values of the corrections to the Kirchhoff theory are com- 
paratively small even for fairly thick plates. For example, the correction 
to the bending moment in the middle of the span for a = '/, is about 12$, 
and for Q = '/,,, about 1.4%. 

Cl The conclusion in [8] relating to the accuracy of the Reissner theory 
must be commented upon. Although the Reissner theory does not determine 
corrections of the order of U to the Kirchhoff theory In the glven case, it 
may (for appreciable values of a) define more accurately the basic state of 
stress in a plate. 

We note that in [g] and [lo] the stresses were expanded in a series of 
Legendre polynomials originating directly from the three-dimensional theory 
of elasticity. Below, the displacements are expanded'in Legendre polynomials 
for known particular solutions C2] and [S] of the basic state of stress with 
with edge effects. 

1, ario notrtlonr. LetE be the modulus of elasticity, )1 Poisson's 

Legendre polynomials. 

+1 +1 

Mr, = 
s 

4d6, Q, = s @@db (r, s = 1, 2) V.i) 
-1 

h(z;) = 51 ps (5) = ',s (3('- f), .*, (=I 

We denote by q,,iJ the conjugate roots [2] and [8] of Equation 

sin22 = 2q 0.3) 

which have the property Re 9, < 0. Further, let 

Conjugate values gJ,f, are obtained from (1.4) by substitution of ZJ for 

91' 
In order to describe edge effects near a surface 5 = Con& we use 5t Co- 

ordinate <* directed from the edge in the interior of the plate. 

2. ar1oulrt1on of L etx4p. Passage to this case consists in the expan- 
sion (at the edge surfaces) of those quantities which specify the edge con- 
ditions in a series of p-functions, and in their approximate satisfaction 
with a finite number of terms of the series. We consider the strip to be 
Infinite along n, and to have a span 1,. We place the origin of the 5 Co' 
ordinate in the middle of the span so that on the edges 

4 = f 401 5* = 0, 
1 

CO =);: 2h = 6'1 (2.Q 

Let the strip be loaded by a normal force so that on the surfaces C=*l 

%(EI fQ = %s(S, *I) = 0, usJ(5, -1: 1) = f p, p = const (2.2) 

Here the state of stress depends on the coordinates e; 
represented [8J as a sum of the basic state of stress 
edge effects (+(I), us(l)),connected with the roots of 
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111 = u1 (0’ + u,(l), u, = Q, l&J = ug (0’ + up) 

We assume identical edge conditions on the edges 5 = so and 5 =--co. By 
making use of the condition of symmetry, from [ 81 we obtain Formulas forthe 
displacements 

a) for the basic state of stress 

u1(” = (- 2E.4, + UJ P, + U,P, (2.4) 

L*(O) =I 1 ( A, t- Ca - ;!) Aa + u”]& + [+ & A, i- U, I P, -I- UP, 

M,,(O) = p (- 5” + $) -&"s, (2.6) 

Here A1 and A3 are consonants of integration. 

b) for the state of stress associated with edge effects, assuming 
that 1 is sufficiently large for these effects to be considered separately, 
i.e. 

max (exp pjE$ - exp (- 3.749&) (( i (2.7) 
we have Formulas [8] 

lp’ = 5 (u,(il) +. q’), 
j=l 

m9 

(r = 1, 3) 

Here G$' 
(1) 

- 
is the conjugate of C-S C* 'Ire mutually conjugate 

integration constants. The represzLtati%?of &@):ul(l) at <* = 0 (on the 
edge surfaces) leads to an expansion of the function (1.4) in a series of 
P-functions 

%m 
(2.9) 

?ll=O m-0 

G. * 
. 

where I. 2m+l' Gj,2m+l~ Fj2m* Fj2m are real numerical coefficients. Their 
values were found for u = 0.3; J' = l,2,3 and m = O,l,2,3. 

It would not be too difficult to write formulas for the stresses in the 
form of (2.4) and (2.8) as well. It is interesting to note that the expan- 
sion of the edge effect stresses in a series of p-functions gives zero as 
the generalized Fourier coefficients for PO and P1. This means that 

&&fl) = Qlflf = 0 (2.10) 

Example. We set the boundary conditions as 

u1= us = 0 npli 6 = f ca (2.11) 

and take p = 0.3. By equating to zero the generalized Fourier coefficients 
in the expansion of the displacement in P-functions, we obtain from (2.11) 
an infinite system of algebraic equations in respect of Ai, Aa, X,, Y, (.f = 
= 1,2,3 ,.... ). Here 

Cj = ‘InXj i ‘/$Yj* Cj = Y,~j - ‘/iliYj (2.12) 

Let these equations be numbered according to the P-functions index. Then 
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Equation zero has zero coefficients for Y,, 
efficients for A,, 

Equations land 2 have zero co- 
and all succeeding equations for A and AZ. The free 

terms a,(&) differ from zero only for the five firstlequations (k = O,l,P, 
3,‘1) and are determined from (2.5) by setting j = so. 

TABLE 1. 

1 

-- 

2 

3 

4 

AI 
AS 

- 

- 

- 

- 

PEf 

0.0875 
- 

0.0875 
- 
- 
- 

0.0875 
- 
- 
- 
- 
- 

0.0875 
- 
- 
- 
- 
- 
- 
- 

- 

- 

- 

0.0056 0.7752 0.0629 
- -0.1750 -0.0056 
- 

-Lx:; 
-0.0607 

- . -0.0083 

0.0058 0.7778 
- -0.1750 
- -0.0169 
- 0.0070 
- -0.0032 
- 0.0046 

0.0067 
- 
- 
- 
- 
- 
- 
- 

0.7719 
-0.1750 
-0.0127 

0.0085 
-0.0005 

0.0012 
-0.0012 
0.0027 

- 

0.0749 
-0.0058 

=EE 
-0:0076 
0.0013 

0.0745 
-0.0067 
-0.0631 
-0.0137 
-0.cO70 

0.0012 

-EE 

- 

I - P 

-0.4143 
0.0300 

-0.3365 
0.0423 

-0.0431 

-;*gg 
ok094 

-0.3450 
0.0426 

-0.0367 
0.0254 

-0.0001 
0.0939 

-0.0011 
0.0046 

We call the first approximation (n = 1) the solution obtained from the 
first two equations retaining only the unknowns A, and An; then the second 

TABLE 2. - 
Corlectiona to the bending moment in the 
middle of the strip span of Kirchhoff 

theoFy (in $1 
a I I 

I I comP1ete “first” '"secr3& 

order order 
I I 

1 :. 
11.4 11.4 
12.2 43 1O.S 

7- 3 z 12.1 ::; 10.6 
12.3 I 10.6 

. I 

1 a 
1.03 - 1.03 

Ri 
1.30 0.32 0.97 

: 
1.30 0.33 0.96 
1.35 0.38 0.96 

approximation (n = 2) is the 
solution obtained from the hrst 
four equations retaining the 
unknowns A,,A,,X,,Y,, etc. 
Table 1 gives the solution to 
the first, second, third and 
forth approximation (n=1,2,3,4). 
The remaining terms of the form 

PC 
E.+ d 

(c< 0.05, d < 0.02) 
-_ 

(2.13) 
are omitted. 

If in the expressions for 
the first approximation for A, 
and A3, only the principal terns 
are retained (the largest powers 
of so), then the Kirchhoff solu- 
tion is obtained. Table2 shows, 
in percent, the corrections to 
the bending moment in the middle 
of the strip span according to 
the Kirchhoff theory. The'first? 
and "second" corrections are 
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those corresponding to whether the quantity is of the order of a or a2 as 
a * 0. The conclusions from Tables 1 and 2 concerning the basic state of 
stress were given in the introduction. In the edge effect zones the lower 
approximations (n<4 

t 
considered, do not guarantee great accuracy, but for 

all that it is seen hat the stress corrections found by Kirchhoff theorv 
are not large numerically, although in the asymptotic sense they are of the 
order of n(s),_l(for cs = a-l- m). 

N 0 t e’. For application of the method described to problems where the 
state of stress varies also with n, the three edge conditions must be fc=mu- 
lated and the displacements determined in the form of sum 

ui = .p + Q) + Q) (i = 1, 2, 3) 

where .i(‘), Ui(l) denote displacements of the basic state of stress and of the 
edge effects connected with the roots of Equation (1.3), and the ~~(2) are 
the edge effect displacements connected with the roots of Equation cos h = 0 
[8] and having real coefficients Z,. The displacements .,(a may likewise be 
expanded in a series of P-functions, then the approximate solution for the 
edge effect may be obtained analogously to the above with the 2, as addition- 
al unknowns. 
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